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Further Thoughts on ‘Perfect’ Labyrinths 

& How to Create Them 

Ellen Galo 

Originally published in Caerdroia 37 (2008), p.45-49 

 
I read with interest the articles in Caerdroia 35 by Andreas Frei (“The Cascading Serpentine”)1 and Tristan 
Smith (“A Daedalus for the 20th Century”),2 along with information on Hebert3 and Smith’s4 respective 
websites and Pierre Rosenstiehl’s article “How the Path to Jerusalem at Chartres Separates the Birds from the 
Fishes.”5 The “cascading serpentine” path so aptly explained and exhibited in Frei’s piece is clearly related to 
the “stretched H-array” mentioned by Rosenstiehl as essential for generating a labyrinth with alternating turns 
and straight runs - figure 1a shows Frei’s graph of the Chartres thread side by side with Rosenstiehl’s 
‘anamorphosis,’ figure 1b. Both display the “stretched H-array”: turn them sideways to see the outline of a 
series of diagonally connected “H’s.”). The top horizontal line in Rosenstiehl’s figure is actually the labyrinth 
centre, not a circuit, so it can be ignored. 

 

 

 

 

 

 

 

 

Figure 1a, above: Frei’s graph for the Chartres labyrinth. 

Figure 1b, right: Rosensteihl’s ‘anamorphosis’ (unrolling) 
of the Chartres labyrinth 

It is actually the thread of the Chartres labyrinth that divides the area of the labyrinth into two equal areas of 
the same shape (they are ‘congruent’). That is, there is a white H-array, and a black H-array, interlocking, and 
the thread is the border between them! Here is an example (figure 2) of a stretched H-array (not Chartres). 
The edges that connect the levels (the "frame") have been cut off. 

 

 

Figure. 2: Stretched H-array (no frame) 

 

 

 

This same H-array property is also exhibited by just six of the twenty labyrinths discovered/generated by 
Hebert and Smith, specifically those with three repetitions of a “round course”: Daedalus’s labyrinths #9, 10, 
11, 12, 15, and 17,6 of which number 17 is Chartres itself. The other labyrinths have only one round course 
plus two folded motifs. 
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Perfect vs. Canonical 

Rosenstiehl speaks of Chartres as the only ‘perfect’ medieval labyrinth of depth 12, i.e. 11 circuits with the 
centre being termed the 12th level. His criteria include both a stretch H-array as well as a throat pattern 
consisting entirely of nested turns. Hebert prefers a less stringent definition and posits the 20 ‘canonical’ 
labyrinths7 found by himself and Smith which have reversible paths, a symmetrical/inverted throat pattern, 
and 3 repetitions total from the two types of ‘motifs’: round course or folded version (see figure 3). But the 
folded ‘motifs’ do not create a cascading serpentine path. 

Figure 3: 
(left) round course 
(right) folded ‘motifs’  

 

Andreas Frei greatly simplifies the work in designing a labyrinth by using a ‘cascading serpentine’ path on a 
rectangular graph, which can then be transferred to a circular version with the ‘goal’ in the centre. This method 
has the advantage that it can be generalized to labyrinths of any size, meaning greater or fewer numbers of 
circuits (levels) or semi-axes (arms). Since the cascading serpentine corresponds to the stretched H-array, the 
only difference between Frei’s definition and Rosenstiehl’s is the throat pattern, which shows up on the 
rectangular graph as the extreme left-hand and right-hand connections between levels. This is the “frame” 
which Rosenstiehl “cuts off” to end up with the H-array (see figure 2). 

Creating new labyrinth designs  

How does knowing all this help us to create new labyrinth designs? Drawing on the ideas of both Hebert and 
Frei, we can do the following: 

1) Choose a motif, which will determine minimum depth and # of arms. For example, a 5-step motif going 
forward 3 units (arms), back 2, forward 3, back 2 and forward 3. The minimum depth would be 5, the number 
of arms 5 (add: 3 – 2 + 3 – 2 + 3 = 5).  In Frei’s terms, this would be a 3-2 pathway sequence. 

2) Repeat the motif an odd number of times (say, 3) to set up a cascading serpentine path. That will create a 
labyrinth of 15 circuits (depth 16 when the centre is included) and 5 arms. 

3) Fill in the open areas of the Frei-style graph to make a complete path. Make sure to do this symmetrically, 
or the path will not be reversible! 

4) Make symmetrical connections between the motifs to complete a reversible path. To be symmetrical, 
opposite corners and sides would be inversions of each other. Tony Phillips’ website8 also helps us here by 
noting that odd and even levels alternate in the level sequence. The path must exit on the opposite side from 
the entrance to be symmetrically reversible, and 
similarly, the first half of the thread will be the inversion 
of the second half. Figure 4 shows the result. 

 

Figure 4: Frei-style graph for a 15-circuit, 5-arm labyrinth 
using a cascading serpentine pattern 

The bold line shows the original 3-2+3-2+3 round course. 
The medium bold lines show the repetitions of the round 
course. The regular lines show the rest of the circuits 
filled in, and the dotted -.-.- lines show the connections 
made between levels to complete the path (the frame). 
Each side of the throat contains a 6-nest and an 8-nest 
(right & left sides of Axis 1). Axis = Arm. 
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Figure 5: The resulting 15-circuit, 5-arm labyrinth 

 

 

 

Classification/Ranking of Labyrinths 

There is still work to be done on comparing the labyrinths, 
similarities and differences: All of the six labyrinths listed 
above have the same pattern on the top semi-axis (arm). 
Using S to indicate Straight run (Single level) and T to 
indicate Turn (Two levels connected by turn) the top axes 
are all T S T S T S T. In addition, all of them have the same or 
inverted pattern on the left and right semi-axes (using 
Daedalus numbering, and reading across the labyrinth from 
left to right): 

Labyrinths 9, 15 & 17:  S T S T S T S S Centre S T S T S T S S  

Labyrinths 10, 11 & 12: S S T S T S T S Centre S S T S T S T S 

Thus, they differ mainly in the throat pattern, see figure 6. They can be further ranked according to how 
internally symmetrical (inside to outside) each side of the throat pattern is, from inside to out. For purposes 
of nested levels and turns, the entrance and centre are counted as levels 0 and 12. 

 
 

Figure 6 (above): Throat patterns (walls, not thread) 

 
 

Figure 7: The six ‘canonical’ labyrinths that 
incorporate 3 round courses 

 

Comparison of the six labyrinths that incorporate 
3 round courses: 

#9: Each side holds a 6-nest and a 4-nest. 

#10: Each side has a 4-nest. 

#11: Each side has a 4-nest, like #10, but close 
to the centre of the throat (more 
symmetrical). 

#12: Each side has one 6-nest. 

#15: Sens: Each side has a 6-nest and a 4-nest, 
but the 4-nest is weaker, includes the 
outside & centre. 

#17: Chartres: each side has two 6-nests! 
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Chartres (#17) has essentially a cross within the throat, dividing it into four sets of nested turns (each set is 
what I will call a ‘6-nest’). Only #11 has comparable symmetry, but with a 4-nest (4 levels/2 turns nested) 
halfway into the centre, surrounded by two non-nested turns on each side (inward side and outward side). 
None of the other four have this internal symmetry within a side, however, 9 and 15 both have a nest in each 
quadrant of the throat, but it's a 4-nest balanced against a 6-nest. In #’s 10 and 12, each side has only one 
nest, not centred, though 12 comes closest. 

In Conclusion 

So, since there is currently no accepted definition as to what constitutes a ‘perfect’ or canonical labyrinth, I 
suggest it might make sense to rank them on degrees of symmetry: 1 degree for left and right axes being 
identical or reversed left to right; 1 degree for having left and right throat being identical or inversions of 
each other, and 1 degree for internal throat symmetry, inside to outside. By this reckoning, labyrinths #11 
and #17 would have 3 degrees, labyrinths #9, 10, 12 and 15 would have 2 degrees, and the others (#’s 1-8, 
13, 14, 16, 18-20) only 1 degree of symmetry. 

I hope these thoughts will be a useful tool for thinking further about these medieval labyrinths! 

Ellen Galo, St. Lawrence University, Canton, NY, USA; July 2007 
(Revised, October 2018) 
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6. All 20 are given at: www.otsys.com/~tsmith/labs.startWith1/pic.11.hebert.pdf 
7. See: www.labyreims.com/e-annexe2.html 
8.  Tony Phillips’ website: www.math.sunysb.edu/~tony/mazes 
 

Editor’s note: 

The original printed version of this article contained an error in figure 7 (Caerdroia 37, p.48) that is corrected 
in this reprint edition. 
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